Soil organic matter content according to different management system within long-term experiment

Monika CVETKOV1, Igor ŠANTAVEC2, Darja KOCJAN AČKO3, Anton TAJNŠEK4

Received October 12, 2009; Accepted January 19, 2010.

ABSTRACT

Within the long-term field experiments at IOSDV Rakičan, Slovenia, the impact of organic matter management system and mineral nitrogen fertilization on the soil organic matter content was studied in the period 1994-2008. The annual balance of Corg was calculated on the basis of the quantity of added organic fertilizers (“Bavarian method”, “VDLUFA method”), while the “Swiss method” also consider the quantity of Corg in the topsoil in the calculation. The following management systems were selected: system A - no organic matter, system B - farmyard manure ploughing in, system C - straw/catch crop ploughing in. Four different mineral N rates (N0, N1, N2, N3) were evaluated. In 2008 the Corg content in topsoil (0-25 cm) was measured according to ISO 10694. Farmyard manure (FYM) fertilization significantly influenced the content of Corg, while the straw application did not result in the significant increase of Corg content. Mineral nitrogen fertilization did not impact Corg content within system A. In system B and system C positive effect of nitrogen fertilization on the Corg content was detected. However, statistically significant impact of mineral N on a higher Corg content was not determined. All three methods underestimated the actual analysed results, although, we can determine the “Swiss method” as the most precise and appropriate for this site-specific location.

Key words: organic fertilizers, farmyard manure, straw, N fertilizers, Corg content, humus balance, humus balance calculation methods

IZVLEČEK


Ključne besede: organska gnojila, hlevski gnoj, slama, mineralni dušik, vsebnost Corg, bilanca humusa, metode izračunavanja bilance humusa

1 University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, SI-1111 Ljubljana, e-mail: monika.kunaver@bf.uni-lj.si
2 ibid.,igor.santavec@bf.uni-lj.si
3 ibid., darja.kocjan@bf.uni-lj.si
4 ibid., tone.tajnsek@bf.uni-lj.si

Acta agriculturae Slovenica, 95 - 1, marec 2010 str. 79 - 88
Land use and agricultural management practices such as crop rotation, soil tillage and organic amendment, depending on the site-specific conditions can affect soil organic matter (SOM). Changes in the organic carbon ($C_{\text{org}}$) content in soil occur almost exclusively in its decomposable part. The tendency of the decomposable carbon ($C_{\text{dec}}$) changes also depends on its initial level. Application of the same fertilization and cropping system can cause a decrease of the SOM content if its initial level was high, as well as an increase of the SOM if its initial level was low (Körschens, 2002). As the organic substances interact with clay in soil to form complexes and micro-aggregates, which make the organic matter less accessible to decomposers, $C_{\text{org}}$ tend to increase and mineralization rate decrease with the clay content (Bosatta and Ågren, 1997; Körschens, 2004; Diekow et al., 2005). The content of organic carbon ($C_{\text{org}}$) is controlled by changes in management via the annual input of organic matter and the rate at which decays (Jenkinson et al., 1999).

The amount of SOM is generally higher in the fertilized soils than in the unfertilized soils (Ellmer et al., 2000; Hoffmann et al., 2002; Berecz et al., 2004; Goyal et al., 2006). Data from several long-term comparative experiments on the effect of FYM and mineral fertilization prove that FYM increases the organic matter content of the soil to a greater extent than mineral fertilization (Körschens, 1997; Kuzyakov and Domanski, 2000; Berecz et al., 2004; Brodowski et al., 2007; Šimon, 2007). On the other hand organic C stocks had barley changed in response to very considerable changes in management in the experiment by Jenkinson et al. (1999). In case of omitted mineral N fertilization, the humus content in the soil decreased rapidly (Stumpe et al., 2000; Beschow and Merbach, 2004; Winkelmann et al., 2006). Incorporation of harvest residues also increased $C_{\text{org}}$ content in soil (Buyanovsky and Wagner, 1998; Triberti et al., 2008). Not only the quantity, also the structure of SOM varies depending on the rate of fertilizer (Ellerbrock et al., 1999; Dorado et al., 2003).

By using methods of calculating the balance of humus we are given an opportunity to control the SOM content in arable soils in order to achieve higher yields and simultaneously avoid environmental pollution. Since the most $C_{\text{org}}$ is bound in soil humic matter, the mineralization and humification of plant carbon in soil should be monitored (Filip and Kubát, 2004). There are several humus balance calculation methods and models, however, in many models, humification is not considered as a part of the process of transformation of organic debris into humus, and the role of humus in the kinetics of this process is evidently underestimated (Chertov et al., 2007). Three humus balance calculation methods, which take into account a humification and mineralization rates and are believed to be appropriate for European Central site-conditions are investigated: “Swiss method” determined by Diez and Krauss (1992), the “Bavarian method” determined by Bavarian working group (Anonymous, 1998) and the “VDLUFA method” determined by Körschens et al. (2004).

The aim of our study was to examine, with the application of mentioned methods, the impact of organic and mineral fertilization on the humus content in the soil according to particular crop rotation at ISODV Rakičan location. As the soil analyses were conducted every year since the establishment of the trial, the results calculated by each method could be compared with the analysed results, therefore a most appropriate method for this site-specific condition could be selected.

## 2 MATERIAL AND METHODS

### 2.1 Experimental layout

As part of the “International Long-term Experiments for Investigating the Effect of Organic and Inorganic Fertilizers” (IOSDV), field experiment was set up at Rakičan, Slovenia (46°38´N, 14°11´E, Pannonian climate, sandy silt) in 1993. The trial was set up as a permanent experiment related to crop rotation with ten different fertilization combinations as a block trial with three repetitions. First, the trial area was divided into three plots, on which each year crops were sown in the following order: corn, winter wheat, barley. Each plot was further divided into two subplots, on which different systems of fertilization with organic management were studied. Each subplot thus represented five variants differing according to the rate of fertilization with mineral nitrogen in the three treatments. The basic plot size was 30 m² (5 × 6 m). Ten different treatments were included in the investigation:
- management system with no organic fertilizers (system A) and two different mineral rates (N0, N3),
- management system with farmyard manure (FYM) ploughing in (system B) and four different mineral N rates (N0, N1, N2, N3),
- management system with straw ploughing in (system C) and four different mineral N rates (N0, N1, N2, N3).

Fertilizing plan for the nutrition of arable crops is shown in Table 1. Fertilization with phosphor and potassium was uniform for all mineral nitrogen rates (N0=0 N kg/ha, N1=73 N kg/ha, N2=147 N kg/ha, N3= 220 N kg/ha): 75 kg/ha P2O5 and 160 kg/ha K2O. At the harvest time, yield and straw quantities were measured for...
each plot. After harvesting every year soil samples from each plot were taken at a depth of 0-25 cm.

*Table 1:* Management systems, mineral N fertilization with regard to the crop, the average amount of mineral N in the three-year crop rotation (N-min<sub>aver</sub>) at IOSDV Rakčan location

<table>
<thead>
<tr>
<th>Treatment/ N-min rates (kg/ha N)</th>
<th>Maize (kg/ha N)</th>
<th>Wheat (kg/ha N)</th>
<th>Barley/ (kg/ha N)</th>
<th>N-min&lt;sub&gt;aver.&lt;/sub&gt; (kg/ha N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No organic fertilizers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0 (AN0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N3 (AN3)</td>
<td>300</td>
<td>195</td>
<td>165</td>
<td>220</td>
</tr>
<tr>
<td>FYM ploughing in (t/ha)</td>
<td>30 t/ha FYM*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0 (BN0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N1 (BN1)</td>
<td>100</td>
<td>65</td>
<td>55</td>
<td>73</td>
</tr>
<tr>
<td>N2 (BN2)</td>
<td>200</td>
<td>130</td>
<td>110</td>
<td>147</td>
</tr>
<tr>
<td>N3 (BN3)</td>
<td>300</td>
<td>195</td>
<td>165</td>
<td>220</td>
</tr>
<tr>
<td>Straw/catch crop ploughing in (t/ha)</td>
<td>Barley straw + fodder radish</td>
<td>Maize straw</td>
<td>Wheat straw</td>
<td>60</td>
</tr>
<tr>
<td>N0 (CN0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N1 (CN1)</td>
<td>100</td>
<td>65</td>
<td>55</td>
<td>73</td>
</tr>
<tr>
<td>N2 (CN2)</td>
<td>200</td>
<td>130</td>
<td>110</td>
<td>147</td>
</tr>
<tr>
<td>N3 (CN3)</td>
<td>300</td>
<td>195</td>
<td>165</td>
<td>220</td>
</tr>
</tbody>
</table>

* FYM is applied every third year.

**Mineral N is added after barley and before fodder radish is sown, every third.

2.2 Weather and soil conditions

The soil type, soil properties and some climatic characteristics of the experimental site are listed in Table 2 (Tajnšek, 2003). Annual precipitation and the average temperature for the period 1994-2008 in comparison with the long-term average precipitation and the long-term average temperature for the period 1960-1990 are shown in Figure 1.

*Table 2:* Soil properties of the experimental site (Tajnšek, 2003)

<table>
<thead>
<tr>
<th>Long. East&lt;sup&gt;1&lt;/sup&gt;</th>
<th>Lat. North&lt;sup&gt;2&lt;/sup&gt;</th>
<th>Prec&lt;sup&gt;3&lt;/sup&gt;. (mm)</th>
<th>Temp&lt;sup&gt;4&lt;/sup&gt;. (°C)</th>
<th>Soil type (FAO classification)</th>
<th>Clay (&lt;2.0μm) (%)</th>
<th>pH (KCl)</th>
<th>C&lt;sub&gt;org&lt;/sub&gt; (%)</th>
<th>N&lt;sub&gt;org&lt;/sub&gt; (%)</th>
<th>C/N Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>14°11´</td>
<td>46°38´</td>
<td>814</td>
<td>9.2</td>
<td>Eutric Fluviosol (ELe)</td>
<td>14.67</td>
<td>7.04</td>
<td>0.926</td>
<td>0.098</td>
<td>9.5</td>
</tr>
</tbody>
</table>

<sup>1</sup> Longitude; <sup>2</sup> Latitude; <sup>3</sup> Precipitation, the long-term average precipitation in the period 1961-1990; <sup>4</sup> Temperature, the long-term average temperature in the period 1961-1990
2.3 Humus balance calculation methods

In our investigation, there are three methods of calculating the balance of humus involved:

- The method determined by Diez and Krauss (1992) named as the "Swiss method" or “S". The annual balance is calculated on the basis of the ploughed-in quantity of organic matter (manure, straw, catch crop, harvest residues) with the corresponding humification coefficient, taking into account the quantity of humus in the soil (H) with the appropriate mineralization coefficient. Results are given in the C_{org} value (t/ha), which is calculated on the basis of humus content (t/ha) multiplied by factor 0.58.

- The method determined by Bayerische Landesanstalt für Bodenkultur und Pflanzenbau, Freising-München (Anonymous, 1998) named as the »Bavarian method« or »B«. The humus balance is calculated on the basis of humification rate of individual crop in crop rotation, taking into account the quantity of added organic matter: manure, straw and catch crop. In this method humification factor varies due to soil texture, therefore at IOSDV Rakičan a humification factors for soil type sandy silt (Eutric Fluviosol [ELe]) are chosen. Results are given in the C_{org} value (t/ha), which is calculated on the basis of humus content (t/ha) multiplied by factor 0.58 (humus content→C_{org}) and by factor 0.1 (dt/ha→t/ha).

- The method determined by working group Körschens et al. (2004) named as the »VDLUFA method« or »V«. With the “VDLUFA method” an organic matter surplus is calculated by addition of specific humification coefficients using for organic matter depleting crop species and for the organic matter inputs: manure, straw and catch crop. The organic matter decay is represented in the coefficients of depleting and increasing crop species. While for the major intensive forms of agricultural managements the lower values of annual humus balance under specific crop are recommended by DirektZahlVerpfIV (Körschens et al., 2004), we have chosen the lower values for further calculation. Results are given in the C_{org} value (t/ha), which is calculated on the basis of content Humus-C (kg/ha) multiplied by factor 0.001 (kg/ha→t/ha).

2.4 Chemical analyses

In the year of the establishment of the experiment (1993), as well as in all subsequent years, the soil analyses were conducted at the laboratories UFZ Leipzig-Halle, Germany (Tajnšek, 2003). The C_{org} content was determined according to ISO 10694, 1996-08. In the calculation of humus balance we considered initial value of C_{org} content in 1993.

2.5 Processing of statistical data

Statistical analysis was conducted with the Statgraphics Plus 4.0 program. Before analysis each treatment was tested for homogeneity of treatment variances. If variances were not homogeneous, data was transformed to log (Y) before ANOVA. Multifactor ANOVA was used in order to analyze the effect of different management systems on the humus content in the soil. Differences among treatments were detected by Duncan’s Multiple Range Test (p < 0.05). Data is presented as untransformed means±SE.
3 RESULTS

3.1 The humus balance in the period 1993-2008

Results showing the $C_{org}$ content of the analysed soil samples at IOSDV Rakičan in the beginning of the trial and the $C_{org}$ content calculated by different methods for the year 2008 are given in Table 3. The initial value of $C_{org}$ in 1993 was 37.27 t/ha $C_{org}$. FYM fertilization significantly influenced the content of $C_{org}$, while the straw application did not result in a significant increase of the $C_{org}$ content. Results show that mineral N fertilization had no significant impact within all three management systems.

As demonstrated in Table 3, mineral nitrogen fertilization did not contribute to an increase of the $C_{org}$ content in the management without organic fertilization (system A). Moreover, with the application of the average amount of N in a three-year crop rotation (220 kg/ha N), the $C_{org}$ content resulted in a decrease of 2.3%, i.e. 0.94 t/ha $C_{org}$. This is comparable to the results of the experiment by Beschow and Merbach (2004), where a comparison of the highest mineral nitrogen (N) with no-N resulted in a merely 1.2-fold higher value of the $C_{org}$ content in the topsoil. Likewise, in the case of mineral N fertilization, the content of $C_{org}$ was slightly higher (1.4 to 1.5 %) than without any N fertilization (1.3 %) (Stumpe et al., 2000; Triberti et al., 2008).

Table 3: $C_{org}$ content (t/ha) of analysed soil samples in 1993 and 2008, the $C_{org}$ content (t/ha) in 2008, calculated by »Swiss« (S), »Bavaria« (B) and »VDLUFA« (V) methods and the difference between analysed and calculated $C_{org}$ content (t/ha) in 2008 for ten different treatments (IOSDV Rakičan)

<table>
<thead>
<tr>
<th>Tre.</th>
<th>$C_{org}$1993 (anal.) (t/ha)</th>
<th>$C_{org}$2008 (anal.) (t/ha)</th>
<th>$C_{org}$2008 (cal.) (t/ha)</th>
<th>$C_{org}$2008 (cal.) - $C_{org}$2008 (cal.) (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN0</td>
<td>41.73 ± 1.28</td>
<td>37.06 ± 0.02</td>
<td>33.28 ± 0.00</td>
<td>4.67 8.45 10.06</td>
</tr>
<tr>
<td>AN3</td>
<td>40.79 ± 1.10</td>
<td>37.26 ± 0.08</td>
<td>33.28 ± 0.00</td>
<td>3.53 7.51 9.12</td>
</tr>
<tr>
<td>BN0</td>
<td>46.96 ± 1.36</td>
<td>38.19 ± 0.02</td>
<td>36.76 ± 0.00</td>
<td>8.77 10.20 9.29</td>
</tr>
<tr>
<td>BN1</td>
<td>48.97 ± 2.16</td>
<td>38.25 ± 0.02</td>
<td>36.76 ± 0.00</td>
<td>10.72 12.21 11.30</td>
</tr>
<tr>
<td>BN2</td>
<td>49.37 ± 0.58</td>
<td>38.37 ± 0.04</td>
<td>36.76 ± 0.00</td>
<td>11.00 12.61 11.70</td>
</tr>
<tr>
<td>BN3</td>
<td>37.27</td>
<td>38.35 ± 0.00</td>
<td>36.76 ± 0.00</td>
<td>9.28 10.87 9.96</td>
</tr>
<tr>
<td>CN0</td>
<td>40.79 ± 1.68</td>
<td>37.90 ± 0.11</td>
<td>36.76 ± 0.00</td>
<td>2.89 3.16 3.18</td>
</tr>
<tr>
<td>CN1</td>
<td>42.53 ± 1.36</td>
<td>37.92 ± 0.07</td>
<td>38.67 ± 0.16</td>
<td>4.61 3.86 3.45</td>
</tr>
<tr>
<td>CN2</td>
<td>44.41 ± 1.10</td>
<td>37.94 ± 0.10</td>
<td>39.27 ± 0.18</td>
<td>6.47 5.14 4.50</td>
</tr>
<tr>
<td>CN3</td>
<td>37.27</td>
<td>38.18 ± 0.03</td>
<td>39.90 ± 0.03</td>
<td>5.56 3.84 2.94</td>
</tr>
</tbody>
</table>

*$a$-f The same letter in the column indicates that there is no significant difference among treatments (Duncan Multiple Range Test, $P<0.05$).

In the system with FYM (system B), $C_{org}$ was significantly higher in all the treatments when compared to AN0 and AN3. The application of mineral N increased the $C_{org}$ content; however, the differences were not significant. The $C_{org}$ content increased by 5.23 t/ha (BN0), 7.24 t/ha (BN1), 7.64 t/ha (BN2) and 5.90 t/ha (BN3). The highest amount of mineral N (BN3) combined with 10 t/ha yr FYM resulted in a
slightly lower $C_{org}$ content. Ellmer reported that the total carbon content between 600 and 800 mg/100g can be achieved by organic fertilization (15 t/ha.yr FYM) and with appropriate crop rotation (Ellmer et al., 2000). An average demand for FYM was determined to be 10 t/ha in a year (Körschens et al., 2004).

In the management with ploughing in of straw (system C), there was a decrease of the $C_{org}$ content by 0.94 t/ha in the treatment without mineral N (CN0). Although the $C_{org}$ content increased with higher fertilizer rates of mineral N, a significant impact of N fertilizing could not be confirmed among the treatments. The $C_{org}$ content increased by 0.80 t/ha (CN1), 2.68 t/ha (CN2) and 2.01 t/ha (CN3). In the experiment by Triberti et al. (2008), the SOC stock did not change in unfertilized plot and N fertilized plot, while it increased at a mean rate of 0.16, 0.18 and 0.36 t/ha in a year with the incorporation of residues, slurry and manure.

In both systems (system B, system C), the application of the highest amount of mineral N (BN3, CN3) resulted in a lower $C_{org}$ content.

The contribution of FYM to the maintenance of the $C_{org}$ content is greater than the input of straw. According to AN0, where the $C_{org}$ content amounted to 41.73 t/ha, the $C_{org}$ content in system B increased in the range of 5.23 to 7.64 t/ha $C_{org}$, i.e. 12.5 % to 18.3 %. In system C, where no mineral N was added (CN0), the $C_{org}$ content decreased by 0.9 t/ha, while in other treatments it increased by 0.80 to 2.68 t/ha $C_{org}$, i.e. by 1.9 % to 6.4 %.

According to different management system, the same fertilizing rate of mineral N significantly influenced the $C_{org}$ content only in system B. In comparison with AN0, the change of the $C_{org}$ content was higher for 12.5 % in BN0, while in system C the $C_{org}$ content decreased for 2.3 % (CN0). When comparing the treatments with the highest mineral N rate, an increase of the $C_{org}$ content by 16.7 % in BN3 and by 7.2 % in CN3 according to AN3 was confirmed. Compared to the unfertilized plot, the FYM application resulted in a 8.2 % higher total organic carbon content than the equivalent NPK fertilization according to Hoffmann et al. (2006). In the experiment by Berecz et al. (2004), both types of organic manuring (FYM, straw or green manure) resulted in significantly higher $C_{org}$ contents compared to the mineral N fertilization without manuring or incorporation of crop residues.

Application of FYM combined with mineral N resulted in the highest $C_{org}$ content among all the treatments. This is in accordance with the results given by other authors (Filip and Kubát, 2004; Goyal et al., 2006). The increase of the C content in the soil during a 50-year period required a four times (e.g. FYM on loamy soil) to 12 times (e.g. straw fertilization on sandy soil) higher input C, depending on the local conditions and the type of primary organic matter (Körschens et al., 2004).

3.2 Calculated and analysed $C_{org}$ content in 2008

In calculation by “Swiss method”, the $C_{org}$ content increased by application of mineral nitrogen (AN3). The results calculated by “Bavarian method” and “VDLUFA method” within the systems are equal; this was expected as the calculation takes into account the amount of added organic matter which does not differentiate between treatment AN0 and AN3. As it is seen from figure 2, method which most closely approximated the analysed $C_{org}$ content in the system with no organic matter was “Swiss” method. The difference between analysed $C_{org2008}$ content and calculated $C_{org2008}$ content is called deviation from analysed $C_{org}$ content. Deviation from analysed $C_{org}$ content was higher by using “Bavarian” and “VDLUFA” methods, deviation ranged from 7.51 to 8.45 t/ha $C_{org}$ at “Bavarian” method and from 9.12 to 10.06 t/ha $C_{org}$ at “VDLUFA” method.
The application of mineral nitrogen in system with FYM statistically increased C\textsubscript{org} content in results calculated by “Swiss” method at BN2 and BN3, while within treatments in “Bavarian” and “VDLUFA” methods there were no differences. Deviation from analysed C\textsubscript{org} content ranged from 8.77 to 11.00 t/ha C\textsubscript{org} at “Swiss”, from 10.20 to 12.61 t/ha C\textsubscript{org} at “Bavarian”, from 9.29 to 11.70 t/ha C\textsubscript{org} at “VDLUFA” method. For this system method which most closely approximated the analysed C\textsubscript{org} content was again “Swiss” method (Figure 3).
In the system with straw ploughing in application of mineral nitrogen significantly increased the C$_{org}$ content in »Bavarian« and »VDLUFA« method, while in »Swiss« method the impact of mineral nitrogen was noticed only in treatment with the highest mineral rate (CN3). In this system the most precise method seemed to be »VDLUFA« method, where the deviation from analyzed C$_{org}$ ranged from 2.94 to 4.50 t/ha C$_{org}$ (Figure 4). Using “Swiss” method the mentioned deviation ranged from 2.89 to 6.47 t/ha C$_{org}$, using “Bavarian” method it was in interval from 3.16 to 5.14 t/ha C$_{org}$.

4 CONCLUSIONS

After the fifteen-year experiment at IOSDV Rakičan, the application of organic fertilizers (farmyard manure, straw) influenced the C$_{org}$ content. However, the impact was significant only in the system with farmyard manure. Mineral nitrogen fertilization contributed to an increase of the C$_{org}$ content in all three management systems (system A, system B, system C). However, the increase was not significant. With the application of mineral nitrogen in the system with no organic fertilizers the C$_{org}$ content resulted in a decrease of 2.3%, i.e. 0.94 t/ha C$_{org}$. In the system with farmyard manure ploughing in the C$_{org}$ content increased by 5.23 t/ha (BN0), 7.24 t/ha (BN1), 7.64 t/ha (BN2) and 5.90 t/ha (BN3). In the system with straw ploughing in the C$_{org}$ content increased by 0.80 t/ha (CN1), 2.68 t/ha (CN2) and 2.01 t/ha (CN3). The comparison of C$_{org}$ contents calculated by different humus balance methods in 2008 shows that all three methods underestimated the actual analysed results. “Swiss” method’s results most closely approximated the analysed C$_{org}$ in the systems A and system B, while in the system C the most appropriate method was “VDLUFA”. As the average of absolute values of deviations from analysed C$_{org}$ contents was the lowest by using “Swiss” method (6.75 t/ha C$_{org}$), we can conclude that this method is most appropriate method for this site-specific location.

5 ACKNOWLEDGEMENT

This work is part of the “Genetics and modern technologies of agricultural plants” programme (P4-0077) funded by the Slovenian Research Agency (ARRS).
6 REFERENCES


ISO 10694, 1996-08 Soil quality - Determination of organic and total carbon after dry combustion (elementary analysis).


Monika CVETKOV in sod.


